Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage.

نویسندگان

  • Sang-Wuk Jeong
  • Kon Chu
  • Keun-Hwa Jung
  • Seung U Kim
  • Manho Kim
  • Jae-Kyu Roh
چکیده

BACKGROUND AND PURPOSE Cell transplantation has been used to reduce behavioral deficit in cerebral ischemia. However, there is no report about cell transplantation in experimental intracerebral hemorrhage (ICH). We hypothesize that intravenously transplanted human neural stem cells (NSCs) can migrate and differentiate into neurons or glial cells, thereby improving functional outcome in ICH. METHODS Experimental ICH was induced by intrastriatal administration of bacterial collagenase in adult rats. One day after surgery, the rats were randomly divided into 2 groups to receive intravenously either immortalized Lac z-positive human NSCs (5x10(6) cells in 500 microL, n=12) or the same amount of saline (n=13). The animals were evaluated for 8 weeks with modified limb placing and rotarod tests. Transplanted NSCs were detected by X-gal histochemistry or beta-gal immunohistochemistry with double labeling of GFAP, NeuN, neurofilament, or CNPase. RESULTS Intravenously transplanted NSCs migrated selectively to the perihematomal areas and differentiated into neurons (approximately 10% of beta-gal+ cells) and astrocytes (approximately 75%). The NSC-transplanted group showed better functional performance on rotarod test after 2 weeks and on modified limb placing test after 5 weeks compared with the control group (P<0.05), and these effects persisted for up to 8 weeks. There was no difference in the final hemispheric area between the 2 groups. CONCLUSIONS Intravenously transplanted NSCs can enter the rat brain with ICH, survive, migrate, and improve functional recovery. Transplantation of human NSCs can be used to restore neurological deficits in experimental ICH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Benefit of Intravenous Administration of Human Umbilical Cord Blood- Mononuclear Cells Following Intracerebral Hemorrhage in Rat

Objective(s) Human umbilical cord blood (HUCB) is now considered as a valuable source for stem cell–based therapies. Previous studies showed that intravascular injection of the HUCB significantly improves neurological functional recovery in a rat model of intracerebral hemorrhage (ICH). In the present study, we hypothesize transplanted HUCB derived mononuclear cells (UC-MCs) can decrease injur...

متن کامل

O 26: Treatment of Traumatic Brain Injury in Adult Rats with Injection of Human Epileptic Neural Stem Cells and Nano-Scaffold

Traumatic brain injury (TBI) is described by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The use of human stem cells and self-assembling peptide scaffolds suggest huge potential for application in the treatment of TBI. In the present study, we surveyed the beneficial effec...

متن کامل

Human Neural Stem Cells Transplantation in Experimental Intracerebral Hemorrhage

B a c k g r o u n d : Intracerebral hemorrhage (ICH) is associated with a considerable proportion of stroke and head injuries, but except for supportive care, there is no medical therapy available. Transplantation of human neural stem cells (NSCs) can be used to reduce behavioral deficit in experimental ischemic infarct model. However, effect of stem cell transplantation in experimental intrace...

متن کامل

Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and anti-inflammatory and angiogenesis effects in an intracerebral hemorrhage rat model.

Mesenchymal stem cells (MSCs) have been successfully used for the treatment of experimental intracerebral hemorrhage (ICH). However, the neuroprotective mechanisms through which MSCs improve neurological functional recovery are not fully understood. In the present study, we tested the hypothesis that treatment with MSCs inhibits inflammation after ICH and reduces subsequent brain injury. Adult ...

متن کامل

Mobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat

Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 34 9  شماره 

صفحات  -

تاریخ انتشار 2003